Current time: 29th May, 2024, 02:23
Welcome back, Valentin Albillo. You last visited: Yesterday, 18:43 (User CP - Log Out)
Open Buddy List

HP Forums / HP Calculators (and very old HP Computers) / General Forum ∇ / [VA] SRC \#014-HP-15C \& clones: Accurate NxN Determinants

Valentin Albillo

Senior Member

Posts: 1,100
Joined: Feb 2015
Warning Level: 0\%

[VA] SRC \#014-HP-15C \& clones: Accurate NxN Determinants

Hi, all,
As it happens, I've been here for 9 years to the day since I joined back in 2015, and to commemorate that momentous event (plus today it's San Valentin's Day, which also helps,) here you are, a brand new SRC \#014 dealing with the accurate computation of $N X N$ real matrix determinants and in particular of those matrices whose elements are all integer, where the determinant's value should mandatorily be integer too but frequently isn't when computing it using our beloved HP calculators' DET functionality.

The Problem

$H P$ vintage models such as the HP-15C, the HP-71B and the $R P L$ models compute the determinant of a square matrix via its $L U$ decomposition, which is a fast, efficient way to do it but involves pivoting and frequently incurs in rounding errors which at times can severely degrade the accuracy of the result, even to the point of rendering it meaningless, with no correct digits whatsoever, and even if the matrix is non-singular. At best, the determinant of all-integer matrices will very frequently be output as a noninteger value.

For example, using MATRIX 9 (HP-15C) or DET (HP-71B) we typically get results like these:

```
    | O 3 4 | Det (15C): 1.9999999998
M1 = | 3 1 4 | , Det (71B): 1.999999999995
    | 1 1 2 | Det Exact: 2
    | 29 18 9 | Det (15C): -262.0000005
M2 = | 32 -28 -22 | , Det (71B): -262.000000023
    | 18 25 15 | Det Exact: -262
```



```
    | -36 16 9 26 | Det Exact: -2384
    | 42 -38 14 -38 |
```

and worst cases include my own Albillo matrices featured in the PDF article HP Article VA016 - Mean Matrices, such as for instance:

The Sleuthing

As stated above, the internal $L U$ decomposition and subsequent processing to compute the determinant from it will usually incur in rounding errors, which can accumulate to the point that for difficult (but non-singular) matrices the result will be meaningless or
having significantly degraded accuracy, frequently outputting integer determinants as non-integers, even for 2×2 matrices, let alone larger ones.

To attempt solving this annoying problem, some vintage $R P L$ models had a flag setting that would check if all elements were integer and if so it would round the computed result to an integer value. However, this wasn't foolproof at all and at times this adhoc rounding would go awry and result in a $\pm \mathbf{1}$ error, usually much bigger than just leaving the non-integer value alone. Worse, the user wasn't informed that this rounding had taken place so in the end the cure was worse than the disease.

What to do ? Well, a possible solution would be to use a different algorithm, in particular one which doesn't involve internal arithmetic operations with real numbers, most likely to appear as the intermediate result of non-exact divisions (e.g. 1/3, $293 / 177, \ldots$) and in 2005 (19 years ago as of 2024 !) I wrote a program to implement this idea, MDET, which you can find featured in this article:

HP Program VA711 - HP-71B Exact Integer Determinants and Permanents

"MDET uses a recursive general expansion by minors procedure and works for any dimensions from 2×2 upwards, though it's only reasonably efficient for low-order \boldsymbol{N} because computation time grows like $N^{*} N$!. It produces exact integer results for integer matrices (provided there are no intermediate overflows) [...]"

MDET uses just multiplications and additions/subtractions but no divisions in sight so it certainly delivers the goods and will compute exactly all determnants above. However, its recursive nature means that using it with matrices larger than, say, 7×7 or 10×10 (depending on the calc's speed) would really take too long because the execution time increases super-exponentially.

Thus, again, what to do ? As usual, the idea is correct but the chosen algorithm isn't optimal, we need to use a much faster one, in particular faster than $O\left(N^{*} N!\right.$), and this is my implementation for the $\mathbf{H P - 1 5 C}$ of such an algorithm (the HP-71B version is quite straightforward so I'm not including it here.)

The HP-15C Implementation

This small 50-step (56 bytes $=8$ registers) program will accurately compute in polynomial time (not super-exponential time like $M D E T$) the determinant of an arbitrary $\mathbf{N} \boldsymbol{x N}$ real matrix \mathbf{A} (not necessarily all-integer) for $\mathbf{2} \leq \boldsymbol{N} \leq \boldsymbol{8}$ (depending on available memory.)

It takes no inputs (but the user must have previously dimensioned and populated the real square matrix \mathbf{A}) and it outputs the computed determinant to the display.

Program listing

-LBL A	001-	42,21,11	STO 0	027-	440
RCL DIM A	002-	45,23,11	STO 1	028-	441
STO I	003-	4425	CLX	029-	4335
STO 2	004 -	442	STO E	030-	4415
DSE 2	005-	42, 5, 2	RCL B	031-	4512
RCL MATRIX A	006-	45,16,11	CHS	032-	16
STO MATRIX B	007-	44,16,12	DSE 0	033-	42, 5, 0
-LBL 2	008-	42,21, 2	-LBL 3	034-	42,21, 3
RCL MATRIX B	009-	45,16,12	RCL 0	035-	450
STO MATRIX E	010-	44,16,15	STO 1	036-	441
RCL I	011-	4525	X<>Y	037-	34
STO 0	012-	440	STO E	038-	4415
-LBL 0	013-	42,21, 0	RCL- B	039-	45,30,12
STO 1	014-	441	DSE 0	040-	42, 5, 0
DSE 1	015-	42, 5, 1	GTO 3 -	041-	223
CLX	016-	4335	RCL MATRIX E	042-	45,16,15
-LBL 1	017-	42,21, 1	RCL MATRIX A	043-	45,16,11
STO E	018-	4415	RESULT B	044-	42,26,12
DSE 1	019-	42, 5, 1	x	045-	20
GTO 1 -	020-	221	CHS	046-	16
DSE 0	021-	42, 5, 0	DSE 2	047-	42, 5, 2
1	022-	1	GTO 2 -	048-	222
RCL 0	023-	450	MATRIX 1	049-	42,16, 1
TEST 6	024-	43,30,6	RCL B	050-	4512
GTO 0 -	025-	220			
RCL I	026-	4525			

Notes:

- This stand-alone program works for $N x N$ matrices ($2 x 2 \leq N \leq 8 x 8$, depending on the HP-15 physical/virtual model's available memory,) and runs in polynomial time.
- It uses matrices \mathbf{A} (the input) and auxiliary matrices \mathbf{B} and \mathbf{E}, all of them $N x N$, as well as registers $\mathbf{R}_{\mathbf{0}}-\mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{I}}$ and labels \mathbf{A}, $\mathbf{0 - 3}$, but no subroutines or flags.
- The input matrix \mathbf{A} is not affected by the computation and so remains unaltered and available for further use without having to re-input it or restore its elements back.
- The program uses the end of program memory to end execution. To call it instead from another program as a subroutine, add a RTN instruction at its very end (RTN 051-43 32). It will then return to the calling program with the determinant's value in the X stack register.
- The required available memory to compute an $N x N$ determinant is $\mathbf{3 *} \boldsymbol{N}^{\mathbf{2}} \mathbf{+ 9}$ registers (program itself included,) so a vintage physical HP-15C/64 can do matrices up to $4 x 4$, the CE/192 can do up to $7 x 7$ and the DM15/M1B can do up to $8 x 8$.

Worked examples

Although all examples below deal with all-integer matrices, the program of course works for arbitrary matrices with non-integer elements and produces their determinants with improved accuracy as well. Assume we're using an HP-15C CE in 192-register mode throughout.

Example 1. Accurately compute the determinant of the following 4×4 all-integer matrix and compare the result with the determinant computed using the buil-in instruction (MATRIX 9):

$$
\text { M3 }=\begin{array}{rrrrrr|}
\mid & -19 & 41 & 22 & 7 & \mid \\
\mid & 5 & 19 & -14 & 0 & \mid \\
\mid & -36 & 16 & 9 & 26 & \mid \\
\mid & 42 & -38 & 14 & -38 & \mid
\end{array}
$$

- Initialize: allocate memory for register $\mathbf{R}_{\mathbf{2}}$ and clear all matrices to 0×0 :

```
2, DIM (i), MATRIX 0 (MEM: O2 183 08-0)
```

- Dimension and populate the input matrix:

```
4, ENTER, DIM A, USER, MATRIX 1,
-19, STO A, 41, STO A, 22, STO A, 7, STO A,
    5, STO A, 19, STO A, -14, STO A, 0, STO A,
-36, STO A, 16, STO A, 9, STO A, 26, STO A,
    42, STO A, -38, STO A, 14, STO A, -38, STO A
```

- Compute its determinant:

```
FIX 6, GSB A -> -2,384.000000
```

- Compare the result with the one produced by the built-in function (MATRIX 9): (no need to re-input the matrix as it's left unaltered by the program)

```
RCL MATRIX A, MATRIX 9 -> -2383.999891
```

As you can see, the built-in instruction returns a non-integer value with degraded accuracy in the last three places, while the program returns the exact integer value.

Example 2. Ditto for my 7x7 matric AM\#1:

AM\#1 $=$| \mid | 50 | 71 | 71 | 56 | 45 | 20 | 52 | \mid |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \mid | 64 | 40 | 84 | 50 | 51 | 43 | 69 | \mid |
| \mid | 31 | 28 | 41 | 54 | 31 | 18 | 33 | \mid |
| \mid | 45 | 23 | 46 | 38 | 50 | 43 | 50 | \mid |
| \mid | 41 | 10 | 28 | 17 | 33 | 41 | 46 | \mid |
| | 66 | 72 | 71 | 38 | 40 | 27 | 69 | \mid |

- Initialize: allocate memory for register $\mathbf{R}_{\mathbf{2}}$ and clear all matrices to 0×0 :

```
2, DIM (i), MATRIX 0 (MEM: O2 183 08-0)
```

- Dimension and populate the input matrix:

```
7, ENTER, DIM A, USER, MATRIX 1,
50, STO A, ..., 69, STO A
```

- Compute its determinant:

```
FIX 9, GSB A -> 1.000000000
```

- Compare the result with the one produced by the built-in function (MATRIX 9):

This time the built-in instruction returns a non-integer value with very severely degraded accuracy in the last eight places, while the program again returns the exact integer value.

Example 3. Last but not least, ditto for my $\mathbf{7 x} \mathbf{7}$ matric $\mathbf{A M} \# \mathbf{7}$:

```
| 13 72 5794 90 92 35 |
| 40 93 90 99 01 95 66,
| 48 91 71 48 93 32 67 |
AM #7 = | 07 93 29 02 24 24 07 |
    | 41 84 44 40 82 27 49 |
    | 03 72 06 33 97 34 04 |
    | 43 82 66 43 83 29 61 |
```

- Initialize: allocate memory for register $\mathbf{R}_{\mathbf{2}}$ and clear all matrices to 0×0 :

```
2, DIM (i), MATRIX O
(MEM: 02183 08-0)
```

- Dimension and populate the input matrix:

```
7, ENTER, DIM A, USER, MATRIX 1,
13, STO A, ..., 61, STO A
```

- Compute its determinant:

```
FIX 9, GSB A -> 1.000000000
```

- Compare the result with the one produced by the built-in function (MATRIX 9):

```
RCL MATRIX A, MATRIX 9 -> -\mathbf{2.956799886}
```

And once more the built-in instruction returns a non-integer value with accuracy so degraded that it loses all 10 digits (and even the sign is wrong !) while the program returns the exact integer value once more.

That'll be all, Over and Out.

v.

EdS2
Senior Member

Posts: 582
Joined: Apr 2014

RE: [VA] SRC \#014-HP-15C \& clones: Accurate NxN Determinants
Splendid! Thank you - and happy anniversary!
EmAIL PM P, FIND RUOTE ROPRT

17th February, 2024, 11:43 (This post was last modified: 17th February, 2024 18:59 by J-F Garnier.)

 Senior Member

Posts: 940
Joined: Dec 2013

RE: [VA] SRC \#014-HP-15C \& clones: Accurate NxN Determinants

Another great piece of 15 c code from Valentin, and nice to come accross the famous AM matrices again! Moreover, it's a new example of what can be done with the extended memory versions of the classic 15 c.

Now, the challenge for us poor readers is to understand and possibly to identify the algorithm.
Well, I took it as my challenge...

Valentin Albillo Wrote:
... this is my implementation for the HP-15C of such an algorithm (the HP-71B version is quite straightforward so I'm not including it here.)

And here we come to the readability of RPN code...
I had to first translate the code to a high level language (actually the HP-71B BASIC) to be able to understand it.
BTW, would RPN/RPL fans be able to port Valentin's code to other Classic machines such as the 41C w/ Advantage pack or the 42 , or even the $28 / 48$ Series, in a way to get a working and readable version, with just the 15 c code as a guide? Just curious...

The algorithm（as far as I understand it）is really interesting，not only it provides an integer result for integer input matrices （within certain limits of course），but it doesn＇t use any division at all，and so doesn＇t have to choose a non－zero pivot．This simplifies the code a lot．
The drawback is that it uses 2 auxiliary matrices，which is a real limitation on small machines（such as the original 15C），contrary to other methods such as the Bareiss algorithm．

Thanks，Valentin，for this SRC ！
J－F

Gene 8

Posts：1，370
Moderator
RE：［VA］SRC \＃014－HP－15C \＆clones：Accurate NxN Determinants
Bravo，Valentin！

Bravo，Valentin！

$\stackrel{\text { Nama }}{ }$	J－F G
港沮沮㬰	Senior Member

Posts： 940
Joined：Dec 2013

RE：［VA］SRC \＃014－HP－15C \＆clones：Accurate NxN Determinants
I spent more time to play with this program and have a few more comments on Valentin＇s SRC \＃014：
This algorithm is fast，it is much faster than the expansion by minor（illustrated by the XDET program from Valentin），and its speed is actually of the same order of magnitude as the LU－decomposition method used by the HP standard DET functions．Of course，in this implementation，a part of the processing is done as user code so not as fast as it could be in microcode．

However，a characteristic of this algorithm and others is that the values of intermediate iterative calculations grow exponentially in magnitude．
We should remember that the exact representation of integer numbers is quite limited on our Classic machines： 1 E 10 for the 15 c ， 1E12 for the 71B（resp．1E13 and 1E15 in internal calculations）．

This SRC is a great illustration of a recent algorithm，but it works on the 15 （or the 71 B ）only if the input matrix elements are small enough to avoid any integer overflow in the intermediate calculations．
As a rule of the thumb，the elements of a 7×7 or 8×8 matrix should not have more than 2 digits．I found examples with numbers of 3 digits that still work well，but others don＇t．

For instance：

```
| 274 213 400 322 341 308 446 |
| 202 210 383 295 360 295 450 |
| 154 175 332 175 322 361 413 |
| 176 147 265 272 328 277 351 |
| 111 131 249 182 324 296 340 |
| 155 179 329 218 381 399 444 |
| 147127 229 174 245 258 297 |
```

The exact determinant of this matrix is 1 ，as can be checked on a symbolic system，or just Free42．
Valentin＇s 15c program indeed gives exactly 1 （the 15c built－in DET gives－571）
On the contrary，with this matrix：

\mid	477	389	402	515	358	409	289	\mid
\mid	302	273	282	322	280	283	205	\mid
\mid	278	231	339	319	343	254	214	\mid
\mid	432	360	406	502	391	359	319	\mid
\mid	475	316	509	649	543	393	288	\mid
\mid	299	304	351	369	459	346	221	\mid
\mid	526	561	442	441	371	491	445	\mid

Valentin＇s 15c program gives 7269230 instead of 1 （the buit－in DET gives a hardly better -1337 value，with the wrong sign）
This SRC achieved its goal，as far as I＇m concerned：learn new（even recent）methods for computing determinants，such as the Bareiss and Bird algorithms，and understand（a little bit）how they are working as well as their limitations on our machines．

J－F

RE: [VA] SRC \#014-HP-15C \& clones: Accurate NxN Determinants

The Bird algorithm (thanks, J-F) implemented for the 42S.
I made two changes:

- negate the input matrix A once
- shrink the matrix B (remove a row) at every step, as the last row is always filled with zeroes.

O , and stack-only. Of course.

```
0 { 79-Byte Prgm }
01•LBL "BIRD"
ENTER
+/-
04•LBL 03
05 X<>Y
06 DIM?
07 X<> ST L @ [B] I -[A]
08 EDIT
09 CLX
10 SIGN
11 X=Y? @ quit when B is a single row
GTO 00
X<>Y
4 ENTER @ I I I 1 - [A]
STOIJ
R^
RCLEL
+/- @ SUM -[A]
J-
1
ENTER
X Y Z T, I
•LBL 02 @ N-I SUM -[A] I,I-1
NEWMAT @ [0] SUM -[A] -[A]
```

@
PUTM
I-
RCLEL
+/-
X<> ST Z
STOEL
STO ST Z
R \downarrow
DIM?
STO+ ST Y
J-
FC? 76
GTO 02
©
7 DELR
8 EXITALL
$9 R^{\wedge}$
STOX ST Y
GTO 03
42 -LBL 00
43 RCLEL
4 ENTER
5 EXITALL
46 R
47 END

Cheers, Werner
.. and, my 15C version.

- works for $\mathrm{n}=1$, too
- twice as fast
- uses $2 n$ fewer matrix elements

```
- uses R0 and R1 only (not I)
-45 bytes instead of 57
001 LBL B
002 RCL MATRIX A
003 STO MATRIX B
004 RESULT B
005 LBL 3
0 0 6 ~ R C L ~ D I M ~ B ~ - - ~ B ~ i s ~ i x n ~
007 X<>Y
008 STO 0
009 STO 1
010 RCL B
0 1 1 \text { DSE 0 -- i := i-1;}
0 1 2 ~ I S G ~ 1 ~ - - ~ s k i p ~
0 1 3 ~ R T N ~ - - ~ i f ~ B ~ i s ~ s i n g l e ~ r o w , ~ w e ' r e ~ d o n e
0 1 4 \text { CHS -- sum := -Bii;}
015 RCL 0
016 R^
0 1 7 \text { DIM B -- remove last row, which will be zeroes anyway}
0 1 8 ~ R C L ~ M A T R I X ~ B ~
019 STO MATRIX E
020 R^
-- put sum back into stack reg. X
0 2 1 ~ G T O ~ 0 ~
022 LBL 2
0 2 3 0
-- zero out row i of E, j=i-1..1
025 STO E
026 DSE 1
027 GTO 1
028 X<>Y
0 2 9 ~ D S E ~ 0 ~
0 3 0 ~ L B L ~ 0 ~
0 3 1 ~ R C L ~ 0
0 3 2 ~ S T O ~ 1 ~
033 X<>Y
0 3 4 ~ S T O ~ E ~ - - ~ E i i ~ : = ~ s u m ;
035 RCL- B -- sum := sum - Bii;
0 3 6 ~ D S E ~ 1 ~
0 3 7 ~ G T O ~ 2 ~
038 RCL MATRIX E
0 3 9 ~ R C L ~ M A T R I X ~ A ~
040 x
041 CHS
042 GTO 3
Cheers，Werner
```

28th February，2024，09：52

RE：［VA］SRC \＃014－HP－15C \＆clones：Accurate NxN Determinants

Werner Wrote

．．and，my 15C version．
－works for $n=1$ ，too
－twice as fast
－uses $2 \mathbf{n}$ fewer matrix elements
－uses R0 and R1 only（not I）
－ 45 bytes instead of 57

Great，so we can now handle 8×8 matrices on the 15 c CE／192！
Let＇s try with this matrix I just created（determinant is exactly 1 ）：
$\left.\begin{array}{lllllllll}\mid & 75 & 43 & 72 & 59 & 37 & 63 & 51 & 67\end{array} \right\rvert\,$
｜ $\begin{array}{lllllllll}67 & 34 & 64 & 45 & 36 & 55 & 38 & 62 & \text {｜}\end{array}$
｜ $85 \begin{array}{llllllll}53 & 87 & 74 & 59 & 70 & 67 & 81\end{array}$
｜ 8749917050806586 ｜
$\begin{array}{llllllllll}\mid & 72 & 35 & 73 & 53 & 37 & 69 & 52 & 68 & \text {｜}\end{array}$

```
| 65 38 71 62 38 68 62 65 1
| 86 56 86 77 56 69 67 80 |
| 82 58 100 82 63 79 87 88 |
```

8 , ENTER , DIM A
enter elements into matrix A ... (a bit long)

Check the matrix with:
RCL MATRIX A , RESULT B , MATRIX 9 (det) -> . 9999585581
(the RESULT B step is important, otherwise the matrix A is no more useable)

Now:
GSB B --> 1 exactly !

J-F

EMAIL PM WWW O FIND

Valentin Albillo 8
Posts: 1,100
Senior Member

Joined: Feb 2015
Warning Level: 0\%

RE: [VA] SRC \#014-HP-15C \& clones: Accurate NxN Determinants

Hi, all,

Well, today it's February, $\mathbf{2 9}^{\text {th }}$ so 15 days have elapsed since I posted my $O P$ and it's high time to add some final comments.
First of all, thanks to all of you for your interest and most especially to those of you who contributed with code and various improvements, namely J-F Garnier and Werner. Frankly, I expected to get more posts since the subject matter is both interesting, instructive and useful, and the HP-15C CE is still very much fashionable but alas, at a meager 7 posts and 1,000 views in 15 days it wasn't to be. Now I'll comment on some of your messages and various matters:

Gene Wrote:

Bravo, Valentin!

Thanks a lot for your kind appreciation, Gene.

J-F Garnier Wrote:

Another great piece of 15 c code from Valentin, and nice to come accross the famous AM matrices again !

Thank you very much for your appreciation and kind words re my code and difficult matrices.

J-F Garnier Wrote:

And here we come to the readability of RPN code... I had to first translate the code to a high level language (actually the HP-71B BASIC) to be able to understand it.

You didn't post your 15C/RPN to 71B/BASIC program in this thread so I'm posting my original straightforward HP-71B BASIC version below.

J-F Garnier Wrote:

The algorithm (as far as I understand it) is really interesting, not only it provides an integer result for integer input matrices (within certain limits of course), but it doesn't use any division at all, and so doesn't have to choose a non-zero pivot. This simplifies the code a lot.

Indeed. Bird's algorithm doesn't use any divisions at all and that's a big plus, completely eliminating having to care about pivots, having to work with floating point values and having to deal with rounding errors.

J-F Garnier Wrote:

The drawback is that it uses 2 auxiliary matrices, which is a real limitation on small machines (such as the original 15C) [...]

Using two extra matrices is unavoidable, as Bird's method essentially relies on matrix multiplication and this usually requires three different matrices on the $H P-15 C: \mathbf{A}=\mathbf{B} \times \mathbf{C}$ with distinct matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}$.

J-F Garnier Wrote:

This SRC is a great illustration of a recent algorithm, but it works on the 15 c (or the 71 B) only if the input matrix elements are small enough to avoid any integer overflow in the intermediate calculations.

Yes, the size of intermediate results is a problem for many algorithms, including the naive one which in this case would entail adding 5040 terms (each of them a product of 7 elements,) which are sure to be more than 10-12 digits long if the elements are 3-digit long or more, so Bird's algorithm does no worse than others in this regard and usually it does better.

J-F Garnier Wrote:

This SRC achieved its goal, as far as I'm concerned: learn new (even recent) methods for computing determinants, such as the Bareiss and Bird algorithms, and understand (a little bit) how they are working as well as their limitations on our machines.

That's the idea! !

J-F Garnier Wrote:

Thanks, Valentin, for this SRC !

You're welcome, J-F, again thanks to you for your continued appreciation.

Werner Wrote

The Bird algorithm (thanks, J-F) implemented for the 42S.
I made two changes: - negate the input matrix A once, - shrink the matrix B (remove a row) at every step, as the last row is always filled with zeroes. O, and stack-only. Of course.

Excellent!

Werner Wrote:

.. and, my 15C version. - works for $\mathrm{n}=1$, too, - twice as fast, - uses 2 n fewer matrix elements, - uses R0 and R1 only (not I), 45 bytes instead of 57

Most excellent! The idea of removing a zero row at every step is really clever. Congratulations !

Now for my original BASIC program for the HP-71B. It is this 4-line, 191-byte suprogram called BIDET (BIrd's DETerminant, pun most definitely intended):

```
100 SUB BIDET(A(,),D) @ N=UBND(A,1) @ DIM B(N,N),E(N,N) @ MAT B=A @ FOR K=1 TO N-1 @ MAT E=B
110 FOR I=2 TO N @ FOR J=1 TO I-1 @ E(I,J)=0 @ NEXT J @ NEXT I
120 FOR I=1 TO N @ S=0 @ FOR J=I+1 TO N @ S=S-B(J,J) @ NEXT J @ E(I,I)=S @ NEXT I
130 MAT B=E*A @ MAT B=-B @ NEXT K @ D=B (1,1)
```

Let's try it with J-F's second $7 x 7$ matrix, namely:

\mid	477	389	402	515	358	409	289	\mid
\mid	302	273	282	322	280	283	205	\|
\|	278	231	339	319	343	254	214	\|
\mid	432	360	406	502	391	359	319	\|
\mid	475	316	509	649	543	393	288	\mid
\mid	299	304	351	369	459	346	221	\mid
\mid	526	561	442	441	371	491	445	\|

Directly from the command line, first execute the following initialization:
>DESTROY ALL @ OPTION BASE 1 @ DIM A(7,7),D @ MAT INPUT A

(... enter all 49 elements ...)

and then let's compute the determinant while also gauging the exactness of the results:
>CFLAG INX @ CALL BIDET (A,D) @ D,FLAG (INX)
10
so the determinant is computed as $\mathbf{1}$ and the $\boldsymbol{I N} \mathrm{X} \boldsymbol{X}$ act flag is $\boldsymbol{0}$ (false) so the value is exact.

Now let's compare with the assembly-language DET function:
>CFLAG INX @ DET(A), FLAG(INX)
-53.88320261931
and this time the INeXact flag is $\mathbf{1}$ (true) so the computed value is truly inexact. A whole lot!
As for my HP-15C program returning 7269230 instead of $\mathbf{1}$ (J-F dixit), it can possibly be made to return the exact value by
combining it with partitioned matrix techniques, as decribed in my article.
We could try partitions into 4 blocks (from $1 \times 1 \ldots$ to $6 \times 6 \ldots$) but perhaps the combo $4 \times 4,4 \times 3,3 \times 4,3 \times 3$ would possibly avoid intermediate overflows and result in the exact value being produced. This is an area worthy of research for those interested.

Last but not least, the same way that J-F translated my $15 C / R P N$ program to $71 B / B A S I C$, the reverse translation is easy to perform manually line by line and results in translating my $71 / B A S I C$ subprogram into my exact $15 C / R P N$ original program, like this:

MAT B=A @ FOR K=1 TO N-1 @ MAT E=B

```
LBL A
    RCL DIM A N
    STO I RI=N
    STO 2
    DSE 2 K=N-1
    RCL MATRIX A
    STO MATRIX B MAT B=A
~LBL 2
    FOR K loop
    RCL MATRIX B
    STO MATRIX E MAT E=B
FOR I=2 TO N @ FOR J=1 TO I-1 @ E(I,J)=0 @ NEXT J @ NEXT I
```

RCL I	N
Sto 0	$I=N$
-LBL 0	FOR I loop
STO 1	
DSE 1	$J=I-1$
CLX	0
-Lbl 1	FOR J loop
STO E	$E(I, J)=0$
DSE 1	
GTO 1-	NEXT J
DSE 0	
1	
RCL 0	
TEST 6 (X\#Y?)	
GTO O-	NEXT I

$S=-B(N, N) @ E(N, N)=0 @ \operatorname{FOR} I=N-1$ TO 1 STEP -1 @ $E(I, I)=S$ @ S=S-B(I,I) @ NEXT I

RCL I	N
STO 0	$I=N$
STO 1	$J=N$
CLX	0
STO E	$E(N, N)=0$
RCL B	$B(N, N)$
CHS	$S=-B(N, N)$
DSE 0	$I=N-1$
LBL 3	$F O R I$ IOOP
RCL 0	I
STO 1	$J=I$
X<>Y	S
STO E	$E(I, I)=S$
RCL- B	$S=S-B(I, I)$
DSE 0	
GTO 3-	$N E X T I$

MAT B=E*A @ MAT B=-B @ NEXT K @ $D=B(1,1)$
RCL MATRIX E
RCL MATRIX A
RESULT B
$\mathrm{x} \quad$ MAT $B=E * A$
CHS MAT $B=-B$
DSE 2
GTO 2『 NEXT K
MATRIX $1 \quad I=1, J=1$
RCL B $\quad B(1,1)$

Easy, right ?

That's all for now, best regards.

59:39:39 Werner 8

Posts: 870
Joined: Dec 2013

RE: [VA] SRC \#014-HP-15C \& clones: Accurate NxN Determinants
I wasn't done yet ;-)
Here is a low memory version of the Bird algorithm.
For a problem of order n it needs only $\mathbf{n \wedge 2}+\mathbf{3 *} \mathbf{n}$ matrix elements.
It uses RI, and R0-R2 so requires at least 2 DIM (i).
Drawbacks:

- it is slower than my previous version (yet, for AM7, still faster than Valentin's original).
- it needs yet another matrix, D
- it's a bit larger (80 bytes $=12$ registers)
- the code is somewhat more involved ;-)

001 LBL D
002 CLX
003 STO 0
004 DIM D -- erase D and E
005 DIM E
006 RCL DIM A
007 STO 1
008 STO I
0091
010 X<>Y
011 DIM D -- D and E 1xn
012 DIM E
013 RCL DIM A
014 RCL g A
015 DSE I -- i := n - 1;
016 ISG $0 \quad--R 0=1$ and skip
017 RTN -- quick return when $\mathrm{n}=1$
018 STO- D -- d(n) := -a(n, n)
019 RESULT B
020 LBL $1 \quad$-- $i=n-1$ to 1
021 RCL DIM A
022 STO 1
023 RCL D -- x := $d(n)$;
024 RCL I
025 ENTER
026 RCL g A
027 STO- D -- $d(n):=d(n)-a(i, i) ;$
028 X<>Y
029 RCL I
030 STO 1 -- k := i;
031 X<>Y
032uSTO E -- e(k) := x; $k:=k+1$;
033 LBL 8 -- e(k) := a(i,k); k=i+1..n
034 RCL I
035 RCL 1
036 RCL 9 A
037uSTO E
038 GTO 8

039 RCL DIM A
040 RCL- I
041 STO 2
042 LBL 2 -- for $n j=n-i$ to i step -1
043 RCL MATRIX E
044 RCL MATRIX A
045 x
046 CHS
047 RCL I
048 RCL+ 2
049 STO 1
050 DSE $1 \quad--j$:= nj + i - 1;
051 RCL D -- d(j)
0521
053 RCL I

```
054 RCL g B
055 STO- D -- d(j) := d(j) - b(i);
056 X<>Y
057 RCL I
058 STO 1 -- k := i;
059 X<>Y
-- e(k) := d(j); k := k + 1;
061 LBL 9 -- e(k) := b (k); k=i+1..n
062 RCL B
063uSTO E
064 GTO 9
065 DSE 2
066 GTO 2
067 DSE I
068 GTO 1
069 RCL B
070 RTN
```

Hope you like it,
Werner

6th March, 2024, 20:18 (This post was last modified: 6th March, 2024 20:22 by Werner.)

59:59: 59 Werner 8
 Senior Member

Posts: 870
Joined: Dec 2013

RE: [VA] SRC \#014-HP-15C \& clones: Accurate NxN Determinants

Shorter, and a bit slower (still marginally faster than Valentin's original)

- 50 lines, 56 bytes (8 registers) (including RTN ;-)
- a 10×10 matrix takes only about 5 seconds on the 15CE
- registers used I012, so needs 2 DIM (i) setting at least
- order n needs $\mathrm{n}^{\wedge} 2+3 * n$ matrix elements
- total memory needed, not counting I01: n^2+3*n+9
max. orders possible:
- 15C/64: 6x6
- 15CE/192: 12×12
- DM15L/229: 13x13
\# Program produced by JRPN 15C. (https://jrpn.jovial.com/run15/index.html)
\# Generated 2024-3-6 11:35 Central European Standard Time.

```
0 0 0 ~ \{ ~ \}
01 {42 21 14 } f LBL D
1 } 1
44 0 } STO 0
    45 23 11 } RCL DIM A
    44 25 } STO I
    43 35 } g CLx
    42 23 14 } f DIM D -- erase D
33 } Rv
    42 23 14 } f DIM D -- D,E 1xn
    42 23 15 } f DIM E
    42 26 12 } f RESULT B
    42 1 } f LBL 1 -- for i=n to 1 step -1
    45 23 11 } RCL DIM A
        16 } CHS
        45 25 } RCL I
        44 1 } STO 1
        } +
        44 2 } STO 2 -- nj := -(n-i);
        43 35 } g CLx
    44 16 15 } STO MATRIX E
    42 5 15 } f DSE E -- E := -ei;
    42 21 2 } f LBL 2 -- for nj=i-n..0
    45 16 15 } RCL MATRIX E
    45 16 11 } RCL MATRIX A
        20 } *
        16 } CHS
        -- B := -E*A;
        45 25 } RCL I
    4530 2 } RCL - 2
```

```
44 1 } STO 1
-- j := i - nj;
    45 14 } RCL D -- t := D(j);
    1 } 1
    45 25 } RCL I
45 43 12 } RCL g B
44 30 14 } STO - D -- D(j) := D(j) - B(i);
    43 35 } g CLx
        1 } 1
    45 25 } RCL I
    44 1 } STO 1
44 43 12 } STO g B -- B(i) := t.
42 21 9 } f LBL 9 -- E(k) := B (k); k=i..n
    45 12 } RCL B
44 15 u } u STO E
    22 9 } GTO 9
42 6 2 } f ISG 2 -- next nj;
    22 2 } GTO 2
42 5 25 } f DSE I -- next i;
    22 1 } GTO 1
    45 14 } RCL D
        16 } CHS
    43 32 } g RTN
```

\# End

Cheers, Werner
(that's it, I think. I see no immediate further improvements)
(incidentally, while I used JRPN to produce the above listing, the program does not run on the simulator as-is, as it contains a bug (the simulator, not the program) - insert ENTER just after RCL D in line 030 to make it work on JRPN)

- Email PM P. FIND

View a Printable Version
Send this Thread to a Friend
Subscribe to this thread

User(s) browsing this thread: Valentin Albillo*

Forum software: MyBB, © 2002-2024 MyBB Group.

